Abstrato
MicroRNA-18b promotes cell proliferation and invasion in non-small cell lung cancer by directly targeting runt-related transcription factor 3
Lei Zhao, Yanjun Wang, Chuanfu Jiang
Lung cancer is the most common cancer and the leading cause of cancer-related deaths in men and women globally. Increasing evidence has demonstrated that microRNAs (miRNAs) may be critical regulators in cancer-related processes. Therefore, understanding the molecular mechanism between Non-Small Cell Lung Cancer (NSCLC) and abnormal miRNA expression levels may help identify novel diagnostic biomarkers and therapeutic targets for patients with NSCLC. MiRNA-18b (miR-18b) is abnormally expressed in multiple types of human cancers. However, the expression pattern, function and underlying mechanisms of miR-18b in NSCLC have yet to be elucidated. This study aimed to detect the expression levels of miR-18b, explore the regulatory roles of miR-18b in NSCLC and reveal the possible underlying mechanisms of miR-18b involved in this process. Experiments indicated that miR-18b was upregulated in NSCLC tissues and cell lines. MiR-18b downregulation suppressed the proliferation and invasion of NSCLC cells. Runt-related transcription factor 3 (RUNX3) was identified as a direct target of miR-18b in NSCLC by a series of experiments. Moreover, RUNX3 overexpression played the same role as miR-18b under expression in NSCLC cells, by a series of experiments. These findings suggested that miR-18b inhibition may provide a novel effective therapeutic method for patients with NSCLC.